Technically Exists

Theorem μ\mu-2

The mu factorial has the same growth rate as fωf_\omega in the Wainer hierarchy in terms of dominance over translations.

nμ![=]fω(n)n\mu! \eqv f_\omega(n)

Lemma μ\mu-5

(2n1n)+n<2nn(2 \uparrow^{n - 1} n) + n < 2 \uparrow^n n for all nN0,n3n \in \N_0, n \ge 3.

Proof

Case where n=3n = 3:

(2313)+3=16+3=19<65,536=233\begin{align*} (2 \uparrow^{3 - 1} 3) + 3 &= 16 + 3 \\ &= 19 \\ &< 65,536 \\ &= 2 \uparrow^3 3 \\ \end{align*}

Cases where n4n \ge 4:

(2n1n)+n<(2n1n)+(2n1n)by the Knuth Arrow Successor Inequality=2(2n1n)<4n1nby the Knuth Arrow Multiplicative Inequalitynn1n=nn2<2nnby the Knuth Arrow Commutative Inequality\begin{align*} (2 \uparrow^{n - 1} n) + n &< (2 \uparrow^{n - 1} n) + (2 \uparrow^{n - 1} n) &&\text{by the Knuth Arrow Successor Inequality} \\ &= 2 \cdot (2 \uparrow^{n - 1} n) \\ &< 4 \uparrow^{n - 1} n &&\text{by the Knuth Arrow Multiplicative Inequality} \\ &\le n \uparrow^{n - 1} n \\ &= n \uparrow^n 2 \\ &< 2 \uparrow^n n &&\text{by the Knuth Arrow Commutative Inequality} \\ \end{align*}

Lemma μ\mu-6

nμ!<2n1nn\mu! < 2 \uparrow^{n - 1} n for all nN0n \in \N_0.

Proof

Base cases:

0μ!=0<2=20101μ!=1<2=21112μ!=2<4=22123μ!=9<16=2313\begin{align*} 0\mu! &= 0 \\ &< 2 \\ &= 2 \uparrow^{0 - 1} 0 \\ 1\mu! &= 1 \\ &< 2 \\ &= 2 \uparrow^{1 - 1} 1 \\ 2\mu! &= 2 \\ &< 4 \\ &= 2 \uparrow^{2 - 1} 2 \\ 3\mu! &= 9 \\ &< 16 \\ &= 2 \uparrow^{3 - 1} 3 \\ \end{align*}

Induction step for n3n \ge 3:

(n+1)μ!=(n+1)n1(nμ!)<(n+1)n1(2n1n)by the induction hypothesis(2n1n)n1(2n1n)by the Knuth Arrow Successor Inequality<2n1((2n1n)+n)by the Knuth Arrow Theorem<2n1(2nn)by Lemma μ-5=2n(n+1)\begin{align*} (n + 1)\mu! &= (n + 1) \uparrow^{n - 1} (n\mu!) \\ &< (n + 1) \uparrow^{n - 1} (2 \uparrow^{n - 1} n) &&\text{by the induction hypothesis} \\ &\le (2 \uparrow^{n - 1} n) \uparrow^{n - 1} (2 \uparrow^{n - 1} n) &&\text{by the Knuth Arrow Successor Inequality} \\ &< 2 \uparrow^{n - 1} ((2 \uparrow^{n - 1} n) + n) &&\text{by the Knuth Arrow Theorem} \\ &< 2 \uparrow^{n - 1} (2 \uparrow^n n) &&\text{by Lemma } \mu\text{-5} \\ &= 2 \uparrow^n (n + 1) \\ \end{align*}

Proposition μ\mu-4

nμ!<fω(n)n\mu! < f_\omega(n) for all nN0n \in \N_0.

Proof

Case where n=0n = 0:

0μ!=0<1=fω(0)\begin{align*} 0\mu! &= 0 \\ &< 1 \\ &= f_\omega(0) \\ \end{align*}

Cases where n1n \ge 1:

nμ!<2n1nby Lemma μ-6fn(n)by Proposition ω-0=fω[n](n)=fω(n)\begin{align*} n\mu! &< 2 \uparrow^{n - 1} n &&\text{by Lemma } \mu\text{-6} \\ &\le f_n(n) &&\text{by Proposition } \omega\text{-0} \\ &= f_{\omega[n]}(n) \\ &= f_\omega(n) \\ \end{align*}

Proposition μ\mu-5

(n+1)μ!>fω(n)(n + 1)\mu! > f_\omega(n) for all nN0,n2n \in \N_0, n \ge 2.

Proof

Case where n=2n = 2:

(2+1)μ!=9>8=fω(2)\begin{align*} (2 + 1)\mu! &= 9 \\ &> 8 \\ &= f_\omega(2) \\ \end{align*}

Cases where n3n \ge 3:

(n+1)μ!=(n+1)n1(nμ!)>(n+1)n1(2(n+1))by Lemma μ-0>(n+1)n1(2n)>2n1(2n)2fω(n)by Theorem ω-1>fω(n)\begin{align*} (n + 1)\mu! &= (n + 1) \uparrow^{n - 1} (n\mu!) \\ &> (n + 1) \uparrow^{n - 1} (2 \cdot (n + 1)) &&\text{by Lemma } \mu\text{-0} \\ &> (n + 1) \uparrow^{n - 1} (2 \cdot n) \\ &> 2 \uparrow^{n - 1} (2 \cdot n) \\ &\ge 2 \cdot f_\omega(n) &&\text{by Theorem } \omega\text{-1} \\ &> f_\omega(n) \\ \end{align*}

Proof of Theorem μ\mu-2

By Proposition μ\mu-4, it cannot be the case that nμ![>]fω(n)n\mu! \gf f_\omega(n). By Proposition μ\mu-5, it cannot be the case that nμ![<]fω(n)n\mu! \gs f_\omega(n). Therefore, nμ![=]fω(n)n\mu! \eqv f_\omega(n).

Referenced results

Knuth Arrow Successor Inequality: Theorem 3.5 in Knuth’s iterated powers

Knuth Arrow Multiplicative Inequality: Lemma 3.7 in Knuth’s iterated powers

Knuth Arrow Commutative Inequality: Theorem 3.2 in Knuth’s iterated powers

Knuth Arrow Theorem: Theorem 3.1 in Knuth’s iterated powers

Proposition 𝜔-0

Lemma 𝜇-0

Theorem 𝜔-1