Technically Exists
Theorem μ-2
The mu factorial has the same growth rate as fω in the Wainer hierarchy in terms of dominance over translations.
nμ![=]fω(n)
Lemma μ-5
(2↑n−1n)+n<2↑nn for all n∈N0,n≥3.
Proof
Case where n=3:
(2↑3−13)+3=16+3=19<65,536=2↑33
Cases where n≥4:
(2↑n−1n)+n<(2↑n−1n)+(2↑n−1n)=2⋅(2↑n−1n)<4↑n−1n≤n↑n−1n=n↑n2<2↑nnby the Knuth Arrow Successor Inequalityby the Knuth Arrow Multiplicative Inequalityby the Knuth Arrow Commutative Inequality
Lemma μ-6
nμ!<2↑n−1n for all n∈N0.
Proof
Base cases:
0μ!1μ!2μ!3μ!=0<2=2↑0−10=1<2=2↑1−11=2<4=2↑2−12=9<16=2↑3−13
Induction step for n≥3:
(n+1)μ!=(n+1)↑n−1(nμ!)<(n+1)↑n−1(2↑n−1n)≤(2↑n−1n)↑n−1(2↑n−1n)<2↑n−1((2↑n−1n)+n)<2↑n−1(2↑nn)=2↑n(n+1)by the induction hypothesisby the Knuth Arrow Successor Inequalityby the Knuth Arrow Theoremby Lemma μ-5
Proposition μ-4
nμ!<fω(n) for all n∈N0.
Proof
Case where n=0:
0μ!=0<1=fω(0)
Cases where n≥1:
nμ!<2↑n−1n≤fn(n)=fω[n](n)=fω(n)by Lemma μ-6by Proposition ω-0
Proposition μ-5
(n+1)μ!>fω(n) for all n∈N0,n≥2.
Proof
Case where n=2:
(2+1)μ!=9>8=fω(2)
Cases where n≥3:
(n+1)μ!=(n+1)↑n−1(nμ!)>(n+1)↑n−1(2⋅(n+1))>(n+1)↑n−1(2⋅n)>2↑n−1(2⋅n)≥2⋅fω(n)>fω(n)by Lemma μ-0by Theorem ω-1
Proof of Theorem μ-2
By Proposition μ-4, it cannot be the case that nμ![>]fω(n). By Proposition μ-5, it cannot be the case that nμ![<]fω(n). Therefore, nμ![=]fω(n).
Referenced results
Knuth Arrow Successor Inequality: Theorem 3.5 in Knuth’s iterated powers
Knuth Arrow Multiplicative Inequality: Lemma 3.7 in Knuth’s iterated powers
Knuth Arrow Commutative Inequality: Theorem 3.2 in Knuth’s iterated powers
Knuth Arrow Theorem: Theorem 3.1 in Knuth’s iterated powers
Proposition 𝜔-0
Lemma 𝜇-0
Theorem 𝜔-1