Technically Exists

Theorem μ\mu-0

The mu factorial has the same growth rate as the mixed factorial in terms of dominance over translations.

nμ![=]nn\mu! \eqv n^*

Lemma μ\mu-0

(n1)μ!>2n(n - 1)\mu! > 2 \cdot n for all nN0,n4n \in \N_0, n \ge 4.

Proof

Base case:

(41)μ!=3μ!=(3(2(1+0)))=9>8=24\begin{align*} (4 - 1)\mu! &= 3\mu! \\ &= (3 \uparrow (2 \cdot (1 + 0))) \\ &= 9 \\ &> 8 \\ &= 2 \cdot 4 \\ \end{align*}

Induction step for n4n \ge 4:

nμ!=nn2((n1)μ!)>nn2(2n)by the induction hypothesis>n+(2n)>2+(2n)=2(n+1)\begin{align*} n\mu! &= n \uparrow^{n - 2} ((n - 1)\mu!) \\ &> n \uparrow^{n - 2} (2 \cdot n) &&\text{by the induction hypothesis} \\ &> n + (2 \cdot n) \\ &> 2 + (2 \cdot n) \\ &= 2 \cdot (n + 1) \\ \end{align*}

Lemma μ\mu-1

nn2n>(n1)n \uparrow^{n - 2} n > (n - 1)^* for all nN0,n2n \in \N_0, n \ge 2.

Proof

Base cases:

2222=22=4>1=1=(21)3323=33=27>3=1+2=2=(31)4424=44>9=(1+2)3=3=(41)\begin{align*} 2 \uparrow^{2 - 2} 2 &= 2 \cdot 2 \\ &= 4 \\ &> 1 \\ &= 1^* \\ &= (2 - 1)^* \\ 3 \uparrow^{3 - 2} 3 &= 3 \uparrow 3 \\ &= 27 \\ &> 3 \\ &= 1 + 2 \\ &= 2^* \\ &= (3 - 1)^* \\ 4 \uparrow^{4 - 2} 4 &= 4 \uparrow\uparrow 4 \\ &> 9 \\ &= (1 + 2) \cdot 3 \\ &= 3^* \\ &= (4 - 1)^* \\ \end{align*}

Induction step for n4n \ge 4:

(n+1)n1(n+1)=(n+1)n2((n+1)n1n)>(n+1)n2(2n1n)>nn2(2n1n)>nn2(2n)=nn2(n+n)>(nn2n)n2nby the Knuth Arrow Theorem>(nn2n)n3n>(n1)n3nby the induction hypothesis=n\begin{align*} (n + 1) \uparrow^{n - 1} (n + 1) &= (n + 1) \uparrow^{n - 2} ((n + 1) \uparrow^{n - 1} n) \\ &> (n + 1) \uparrow^{n - 2} (2 \uparrow^{n - 1} n) \\ &> n \uparrow^{n - 2} (2 \uparrow^{n - 1} n) \\ &> n \uparrow^{n - 2} (2 \cdot n) \\ &= n \uparrow^{n - 2} (n + n) \\ &> (n \uparrow^{n - 2} n) \uparrow^{n - 2} n &&\text{by the Knuth Arrow Theorem} \\ &> (n \uparrow^{n - 2} n) \uparrow^{n - 3} n \\ &> (n - 1)^* \uparrow^{n - 3} n &&\text{by the induction hypothesis} \\ &= n^* \\ \end{align*}

Proposition μ\mu-0

nμ!>nn\mu! > n^* for all nN0,n4n \in \N_0, n \ge 4.

Proof

nμ!=nn2((n1)μ!)>nn2(2n)by Lemma μ-0=nn2(n+n)>(nn2n)n2nby the Knuth Arrow Theorem>(n1)n2nby Lemma μ-1>(n1)n3n=n\begin{align*} n\mu! &= n \uparrow^{n - 2} ((n - 1)\mu!) \\ &> n \uparrow^{n - 2} (2 \cdot n) &&\text{by Lemma } \mu\text{-0} \\ &= n \uparrow^{n - 2} (n + n) \\ &> (n \uparrow^{n - 2} n) \uparrow^{n - 2} n &&\text{by the Knuth Arrow Theorem} \\ &> (n - 1)^* \uparrow^{n - 2} n &&\text{by Lemma } \mu\text{-1} \\ &> (n - 1)^* \uparrow^{n - 3} n \\ &= n^* \\ \end{align*}

Proposition μ\mu-1

nμ!<(n+2)n\mu! < (n + 2)^* for all nN0n \in \N_0.

Proof

Base case:

0μ!=0<3=1+2=2=(0+2)\begin{align*} 0\mu! &= 0 \\ &< 3 \\ &= 1 + 2 \\ &= 2^* \\ &= (0 + 2)^* \\ \end{align*}

Induction step:

(n+1)μ!=(n+1)n1(nμ!)<(n+1)n1(n+2)by the induction hypothesis<(n+2)n1(n+2)=(n+2)n2<(n+2)n(n+3)=(n+3)\begin{align*} (n + 1)\mu! &= (n + 1) \uparrow^{n - 1} (n\mu!) \\ &< (n + 1) \uparrow^{n - 1} (n + 2)^* &&\text{by the induction hypothesis} \\ &< (n + 2)^* \uparrow^{n - 1} (n + 2)^* \\ &= (n + 2)^* \uparrow^n 2 \\ &< (n + 2)^* \uparrow^n (n + 3) \\ &= (n + 3)^* \\ \end{align*}

Proof of Theorem μ\mu-0

By Proposition μ\mu-0, it cannot be the case that nμ![<]nn\mu! \gs n^*. By Proposition μ\mu-1, it cannot be the case that nμ![>]nn\mu! \gf n^*. Therefore, nμ![=]nn\mu! \eqv n^*.

Referenced results

Knuth Arrow Theorem: Theorem 3.1 in Knuth’s iterated powers