Technically Exists
Theorem μ-0
The mu factorial has the same growth rate as the mixed factorial in terms of dominance over translations.
nμ![=]n∗
Lemma μ-0
(n−1)μ!>2⋅n for all n∈N0,n≥4.
Proof
Base case:
(4−1)μ!=3μ!=(3↑(2⋅(1+0)))=9>8=2⋅4
Induction step for n≥4:
nμ!=n↑n−2((n−1)μ!)>n↑n−2(2⋅n)>n+(2⋅n)>2+(2⋅n)=2⋅(n+1)by the induction hypothesis
Lemma μ-1
n↑n−2n>(n−1)∗ for all n∈N0,n≥2.
Proof
Base cases:
2↑2−223↑3−234↑4−24=2⋅2=4>1=1∗=(2−1)∗=3↑3=27>3=1+2=2∗=(3−1)∗=4↑↑4>9=(1+2)⋅3=3∗=(4−1)∗
Induction step for n≥4:
(n+1)↑n−1(n+1)=(n+1)↑n−2((n+1)↑n−1n)>(n+1)↑n−2(2↑n−1n)>n↑n−2(2↑n−1n)>n↑n−2(2⋅n)=n↑n−2(n+n)>(n↑n−2n)↑n−2n>(n↑n−2n)↑n−3n>(n−1)∗↑n−3n=n∗by the Knuth Arrow Theoremby the induction hypothesis
Proposition μ-0
nμ!>n∗ for all n∈N0,n≥4.
Proof
nμ!=n↑n−2((n−1)μ!)>n↑n−2(2⋅n)=n↑n−2(n+n)>(n↑n−2n)↑n−2n>(n−1)∗↑n−2n>(n−1)∗↑n−3n=n∗by Lemma μ-0by the Knuth Arrow Theoremby Lemma μ-1
Proposition μ-1
nμ!<(n+2)∗ for all n∈N0.
Proof
Base case:
0μ!=0<3=1+2=2∗=(0+2)∗
Induction step:
(n+1)μ!=(n+1)↑n−1(nμ!)<(n+1)↑n−1(n+2)∗<(n+2)∗↑n−1(n+2)∗=(n+2)∗↑n2<(n+2)∗↑n(n+3)=(n+3)∗by the induction hypothesis
Proof of Theorem μ-0
By Proposition μ-0, it cannot be the case that nμ![<]n∗. By Proposition μ-1, it cannot be the case that nμ![>]n∗. Therefore, nμ![=]n∗.
Referenced results
Knuth Arrow Theorem: Theorem 3.1 in Knuth’s iterated powers