Technically Exists

Theorem μ\mu-1

The mu factorial has the same growth rate as the Ackermann-Péter function in terms of dominance over translations.

nμ![=]A(n,n)n\mu! \eqv A(n, n)

Lemma μ\mu-2

nμ!>n+4n\mu! > n + 4 for all nN0,n3n \in \N_0, n \ge 3.

Proof

Base case:

3μ!=(3(2(1+0)))=9>7=3+4\begin{align*} 3\mu! &= (3 \uparrow (2 \cdot (1 + 0))) \\ &= 9 \\ &> 7 \\ &= 3 + 4 \\ \end{align*}

Induction step for n3n \ge 3:

(n+1)μ!=(n+1)n1(nμ!)>(n+1)n1(n+4)by the induction hypothesis>(n+1)+(n+4)>n+5\begin{align*} (n + 1)\mu! &= (n + 1) \uparrow^{n - 1} (n\mu!) \\ &> (n + 1) \uparrow^{n - 1} (n + 4) &&\text{by the induction hypothesis} \\ &> (n + 1) + (n + 4) \\ &> n + 5 \\ \end{align*}

Proposition μ\mu-2

nμ!>A(n,n)n\mu! > A(n, n) for all nN0,n4n \in \N_0, n \ge 4.

Proof

nμ!=nn2((n1)μ!)>nn2(n+3)by Lemma μ-2>2n2(n+3)>2n2(n+3)3=A(n,n)by the Ackermann-Peˊter Closed Form Theorem\begin{align*} n\mu! &= n \uparrow^{n - 2} ((n - 1)\mu!) \\ &> n \uparrow^{n - 2} (n + 3) &&\text{by Lemma } \mu\text{-2} \\ &> 2 \uparrow^{n - 2} (n + 3) \\ &> 2 \uparrow^{n - 2} (n + 3) - 3 \\ &= A(n, n) &&\text{by the Ackermann-Péter Closed Form Theorem} \\ \end{align*}

Lemma μ\mu-3

nμ!<2n(n+1)n\mu! < 2 \uparrow^n (n + 1) for all nN0n \in \N_0.

Proof

Base cases:

0μ!=0<2=20(0+1)1μ!=1<4=21(1+1)2μ!=2<16=22(2+1)\begin{align*} 0\mu! &= 0 \\ &< 2 \\ &= 2 \uparrow^0 (0 + 1) \\ 1\mu! &= 1 \\ &< 4 \\ &= 2 \uparrow^1 (1 + 1) \\ 2\mu! &= 2 \\ &< 16 \\ &= 2 \uparrow^2 (2 + 1) \\ \end{align*}

Induction step for n2n \ge 2:

(n+1)μ!=(n+1)n1(nμ!)<(n+1)n1(2n(n+1))by the induction hypothesis<(n+1)n1((n+1)n(n+1))=(n+1)n(n+2)<(n+2)n(n+2)=(n+2)n+12<2n+1(n+2)by the Knuth Arrow Commutative Inequality\begin{align*} (n + 1)\mu! &= (n + 1) \uparrow^{n - 1} (n\mu!) \\ &< (n + 1) \uparrow^{n - 1} (2 \uparrow^n (n + 1)) &&\text{by the induction hypothesis} \\ &< (n + 1) \uparrow^{n - 1} ((n + 1) \uparrow^n (n + 1)) \\ &= (n + 1) \uparrow^n (n + 2) \\ &< (n + 2) \uparrow^n (n + 2) \\ &= (n + 2) \uparrow^{n + 1} 2 \\ &< 2 \uparrow^{n + 1} (n + 2) &&\text{by the Knuth Arrow Commutative Inequality} \\ \end{align*}

Lemma μ\mu-4

2nm2n(m+2)32 \uparrow^n m \le 2 \uparrow^n (m + 2) - 3 for all m,nN0m, n \in \N_0.

Proof

Base cases where n=0n = 0:

20m=2m<2m+1=2m+223=20(m+2)3\begin{align*} 2 \uparrow^0 m &= 2 \cdot m \\ &< 2 \cdot m + 1 \\ &= 2 \cdot m + 2 \cdot 2 - 3 \\ &= 2 \uparrow^0 (m + 2) - 3 \\ \end{align*}

Base cases where m=0m = 0 and n1n \ge 1:

2n0=1=43=2n23=2n(0+2)3\begin{align*} 2 \uparrow^n 0 &= 1 \\ &= 4 - 3 \\ &= 2 \uparrow^n 2 - 3 \\ &= 2 \uparrow^n (0 + 2) - 3 \\ \end{align*}

Induction step for mm, with the assumption that the lemma holds for nn:

2n+1(m+1)=2n(2n+1m)2n(2n+1(m+2)3)by the induction hypothesis2n(2n+1(m+2)1)3by assumption<2n(2n+1(m+2))3=2n+1(m+3)3\begin{align*} 2 \uparrow^{n + 1} (m + 1) &= 2 \uparrow^n (2 \uparrow^{n + 1} m) \\ &\le 2 \uparrow^n (2 \uparrow^{n + 1} (m + 2) - 3) &&\text{by the induction hypothesis} \\ &\le 2 \uparrow^n (2 \uparrow^{n + 1} (m + 2) - 1) - 3 &&\text{by assumption} \\ &< 2 \uparrow^n (2 \uparrow^{n + 1} (m + 2)) - 3 \\ &= 2 \uparrow^{n + 1} (m + 3) - 3 \\ \end{align*}

Performing induction over nn completes the proof.

Proposition μ\mu-3

nμ!<A(n+1,n+1)n\mu! < A(n + 1, n + 1) for all nN0n \in \N_0.

Proof

Base cases:

0μ!=0<3=2+(1+3)3=A(1,1)1μ!=1<7=2(2+3)3=A(2,2)2μ!=2<61=2(3+3)3=A(3,3)\begin{align*} 0\mu! &= 0 \\ &< 3 \\ &= 2 + (1 + 3) - 3 \\ &= A(1, 1) \\ 1\mu! &= 1 \\ &< 7 \\ &= 2 \cdot (2 + 3) - 3 \\ &= A(2, 2) \\ 2\mu! &= 2 \\ &< 61 \\ &= 2 \uparrow (3 + 3) - 3 \\ &= A(3, 3) \\ \end{align*}

Induction step for n2n \ge 2:

(n+1)μ!=(n+1)n1(nμ!)<(n+1)n1(2n(n+1))by Lemma μ-3<(2n(n+1))n1(2n(n+1))=(2n(n+1))n2<2n(n+3)by the Knuth Arrow Theorem2n(n+5)3by Lemma μ-4=A(n+2,n+2)by the Ackermann-Peˊter Closed Form Theorem\begin{align*} (n + 1)\mu! &= (n + 1) \uparrow^{n - 1} (n\mu!) \\ &< (n + 1) \uparrow^{n - 1} (2 \uparrow^n (n + 1)) &&\text{by Lemma } \mu\text{-3} \\ &< (2 \uparrow^n (n + 1)) \uparrow^{n - 1} (2 \uparrow^n (n + 1)) \\ &= (2 \uparrow^n (n + 1)) \uparrow^n 2 \\ &< 2 \uparrow^n (n + 3) &&\text{by the Knuth Arrow Theorem} \\ &\le 2 \uparrow^n (n + 5) - 3 &&\text{by Lemma } \mu\text{-4} \\ &= A(n + 2, n + 2) &&\text{by the Ackermann-Péter Closed Form Theorem} \\ \end{align*}

Proof of Theorem μ\mu-1

By Proposition μ\mu-2, it cannot be the case that nμ![<]A(n,n)n\mu! \gs A(n, n). By Proposition μ\mu-3, it cannot be the case that nμ![>]A(n,n)n\mu! \gf A(n, n). Therefore, nμ![=]A(n,n)n\mu! \eqv A(n, n).

Referenced results

Ackermann-Péter Closed Form Theorem: Theorem 4 in Ackermann and the superpowers

Knuth Arrow Theorem: Theorem 3.1 in Knuth’s iterated powers

Knuth Arrow Commutative Inequality: Theorem 3.2 in Knuth’s iterated powers