Technically Exists
Theorem μ-1
The mu factorial has the same growth rate as the Ackermann-Péter function in terms of dominance over translations.
nμ![=]A(n,n)
Lemma μ-2
nμ!>n+4 for all n∈N0,n≥3.
Proof
Base case:
3μ!=(3↑(2⋅(1+0)))=9>7=3+4
Induction step for n≥3:
(n+1)μ!=(n+1)↑n−1(nμ!)>(n+1)↑n−1(n+4)>(n+1)+(n+4)>n+5by the induction hypothesis
Proposition μ-2
nμ!>A(n,n) for all n∈N0,n≥4.
Proof
nμ!=n↑n−2((n−1)μ!)>n↑n−2(n+3)>2↑n−2(n+3)>2↑n−2(n+3)−3=A(n,n)by Lemma μ-2by the Ackermann-Peˊter Closed Form Theorem
Lemma μ-3
nμ!<2↑n(n+1) for all n∈N0.
Proof
Base cases:
0μ!1μ!2μ!=0<2=2↑0(0+1)=1<4=2↑1(1+1)=2<16=2↑2(2+1)
Induction step for n≥2:
(n+1)μ!=(n+1)↑n−1(nμ!)<(n+1)↑n−1(2↑n(n+1))<(n+1)↑n−1((n+1)↑n(n+1))=(n+1)↑n(n+2)<(n+2)↑n(n+2)=(n+2)↑n+12<2↑n+1(n+2)by the induction hypothesisby the Knuth Arrow Commutative Inequality
Lemma μ-4
2↑nm≤2↑n(m+2)−3 for all m,n∈N0.
Proof
Base cases where n=0:
2↑0m=2⋅m<2⋅m+1=2⋅m+2⋅2−3=2↑0(m+2)−3
Base cases where m=0 and n≥1:
2↑n0=1=4−3=2↑n2−3=2↑n(0+2)−3
Induction step for m, with the assumption that the lemma holds for n:
2↑n+1(m+1)=2↑n(2↑n+1m)≤2↑n(2↑n+1(m+2)−3)≤2↑n(2↑n+1(m+2)−1)−3<2↑n(2↑n+1(m+2))−3=2↑n+1(m+3)−3by the induction hypothesisby assumption
Performing induction over n completes the proof.
Proposition μ-3
nμ!<A(n+1,n+1) for all n∈N0.
Proof
Base cases:
0μ!1μ!2μ!=0<3=2+(1+3)−3=A(1,1)=1<7=2⋅(2+3)−3=A(2,2)=2<61=2↑(3+3)−3=A(3,3)
Induction step for n≥2:
(n+1)μ!=(n+1)↑n−1(nμ!)<(n+1)↑n−1(2↑n(n+1))<(2↑n(n+1))↑n−1(2↑n(n+1))=(2↑n(n+1))↑n2<2↑n(n+3)≤2↑n(n+5)−3=A(n+2,n+2)by Lemma μ-3by the Knuth Arrow Theoremby Lemma μ-4by the Ackermann-Peˊter Closed Form Theorem
Proof of Theorem μ-1
By Proposition μ-2, it cannot be the case that nμ![<]A(n,n). By Proposition μ-3, it cannot be the case that nμ![>]A(n,n). Therefore, nμ![=]A(n,n).
Referenced results
Ackermann-Péter Closed Form Theorem: Theorem 4 in Ackermann and the superpowers
Knuth Arrow Theorem: Theorem 3.1 in Knuth’s iterated powers
Knuth Arrow Commutative Inequality: Theorem 3.2 in Knuth’s iterated powers